Главная Промышленная автоматика.

все операторы, выполняемые над данными этого типа, помещаются в один раздел программы. Если необходимо изменить реализацию АТД, мы знаем, где найти и что изменить в одном небольшом разделе программы, и можем быть уверенными, что это не приведет к ошибкам где-либо в программе при работе с этим типом данных. Более того, вне раздела с определением операторов АТД мы можем рассматривать типы АТД как первичные типы, так как объявление типов формально не связано с их реализацией. Но в этом случае могут возникнуть сложности, так как некоторые операторы могут инициироваться для более одного АТД и ссылки на эти операторы должны быть в разделах нескольких АТД.

Для иллюстрации основных идей, приводящих к созданию АТД, рассмотрим процедуру greedy из предыдущего раздела (листинг 1.3), которая использует простые операторы над данными абстрактного типа LIST (список целых чисел). Эти операторы должны выполнить над переменной newclr типа LIST следующие действия.

1. Сделать список пустым.

2. Выбрать первый элемент списка и, если список пустой, возвратить значение null.

3. Выбрать следующий элемент списка и возвратить значение null, если следующего элемента нет.

4. Вставить целое число в список.

Возможно применение различных структур данных, с помощью которых можно эффективно выполнить описанные действия. (Подробно структуры данных будут рассмотрены в главе 2.) Если в листинге 1.3 заменить соответствующие операторы выражениями

MAKENULL(ra«U)c;r); w ~ FlKST(,newclr); w := NEXTnewclr); INSERT(o, newclr);

то будет понятен один из основных аспектов (и преимуществ) абстрактных типов данных. Можно реализовать тип данных любым способом, а программы, использующие объекты этого типа, не зависят от способа реализации типа - за это отвечают процедуры, реализующие операторы для этого типа данных.

Вернемся к абстрактному типу данных GRAPH (Граф). Для объектов этого типа необходимы операторы, которые выполняют следующие действия.

1. Выбирают первую незакрашенную вершину.

2. Проверяют, существует ли ребро между двумя вершинами.

3. Помечают вершину цветом.

4. Выбирают следующую незакрашенную вершину.

Очевидно, что вне поля зрения процедуры greedy остаются и другие операторы, такие как вставка вершин и ребер в граф или помечающие все вершины графа как незакрашенные. Различные структуры данных, поддерживающие этот тип данных, будут рассмотрены в главах 6 и 7.

Необходимо особо подчеркнуть, что количество операторов, применяемых к объектам данной математической модели, не ограничено. Каждый набор операторов определяет отдельный АТД. Вот примеры операторов, которые можно определить для абстрактного типа данных SET (Множество).

1. MAKENULL(yl). Эта процедура делает множество у1 пустым множеством.

2. UNION(yl, В, С). Эта процедура имеет два "входных" аргумента, множества у1 п В, п присваивает объединение этих множеств "выходному" аргументу - множеству С.

3. В1ЪЩА). Эта функция имеет аргумент-множество А и возвращает объект целого типа, равный количеству элементов множества у1.



Термин реализация АТД подразумевает следующее: перевод в операторы языка программирования объявлений, определяющие переменные этого абстрактного типа данных, плюс процедуры для каждого оператора, выполняемого над объектами АТД. Реализация зависит от структуры данных, представляющих АТД. Каждая структура данных строится на основе базовых типов данных применяемого языка программирования, используя доступные в этом языке средства структурирования данных. Структуры массивов и записей - два важных средства структурирования данных, возможных в языке Pascal. Например, одной из возможных реализаций переменной S типа SET может служить массив, содержащий элементы множества S.

Одной из основных причин определения двух различных АТД в рамках одной модели является то, что над объектами этих АТД необходимо выполнять различные действия, т.е. определять операторы разных типов. В этой книге рассматривается только несколько основных математических моделей, таких как теория множеств и теория графов, но при различных реализациях на основе этих моделей определенных АТД будут строиться различные наборы операторов.

В идеале желательно писать программы на языке, базовых типов данных и операторов которого достаточно для реализации АТД. С этой точки зрения язык Pascal не очень подходящий язык для реализации различных АТД, но, с другой стороны, трудно найти иной язык программирования, в котором можно было бы так непосредственно декларировать АТД. Дополнительную информацию о таких языках программирования см. в библиографических примечаниях в конце главы.

1.3. Типы данных, структуры данных и абстрактные тины данных

Хотя термины тип данных (или просто тип), структура данных и абстрактный тип данных звучат похоже, но имеют они различный смысл. В языках программирования тип данных переменной обозкачает множество значений, которые может принимать эта переменная. Например, переменная булевого (логического) типа может принимать только два значения: значение true (истина) и значение false (ложь) и никакие другие. Набор базовых типов данных отличается в различных языках: в языке Pascal это типы целых (integer) и действительных (real) чисел, булев (boolean) тип и символьный (char) тип. Правила конструирования составных типов данных (на основе базовых типов) также различаются в разных языках программирования: как мы уже упоминали, Pascal легко и быстро строит такие типы.

Абстрактный тип данных - это математическая модель плюс различные операторы, определенные в рамках этой модели. Как уже указывалось, мы можем разрабатывать алгоритм в терминах АТД, но для реализации алгоритма в конкретном языке программирования необходимо найти способ представления АТД в терминах типов данных и операторов, поддерживаемых данным языком программирования. Для представления АТД используются структуры данных, которые представляют собой набор переменных, возможно, различных типов данных, объединенных определенным образом.

Базовым строительным блоком структуры данных является ячейка, которая предназначена для хранения значения определенного базового или составного типа данных. Структуры данных создаются путем задания имен совокупностям (агрегатам) ячеек и (необязательно) интерпретации значения некоторых ячеек как представителей (т.е. указателей) других ячеек.

В качестве простейщего механизма агрегирования ячеек в Pascal и больщинстве других языков программирования можно применять (одномерный) массив, т.е. последовательность ячеек определенного типа. Массив также можно рассматривать как отображение множества индексов (таких как целые числа 1, 2, га) в множество ячеек. Ссылка на ячейку обычно состоит из имени массива и значения из множества индексов данного массива. В Pascal множество индексов может быть нечислового ти-



па, напримф (север, восток, юг, запад), или интервального типа (как 1..10). Значения всех ячеек массива должны иметь одинаковый тип данных. Объявление

имя: аггау[ТипИндекса] of ТипЯчеек;

задает имя для последовательности ячеек, тип для элементов множества индексов и тип содержимого ячеек.

Кстати, Pascal необычайно богат на типы индексов. Многие языки программирования позволяют использовать в качестве индексов только множества последовательных целых чисел. Например, чтобы в языке Fortran в качестве индексов массива можно было использовать буквы, надо все равно использовать целые индексы, заменяя "А" на 1, "В" на 2, и т.д.

Другим общим механизмом агрегирования ячеек в языках программирования является структура записи. Запись (record) можно рассматривать как ячейку, состоящую из нескольких других ячеек (называемых полями), значения в которых могут быть разных типов. Записи часто группируются в массивы; тип данных определяется совокупностью типов полей записи. Например, в Pascal объявление

realist: array[1..4] of record da ta: real; next: integer

задает имя reclist (список записей) 4-элементного массива, значениями которого являются записи с двумя полями: data (данные) и next (следующий).

Третий метод агрегирования ячеек, который можно найти в Pascal и некоторых других языках программирования, - это файл. Файл, как и одномерный массив, является последовательностью значений определенного типа. Однако файл не имеет индексов: его элементы доступны только в том порядке, в каком они были записаны в файл. В отличие от файла, массивы и записи являются структурами с "произвольным доступом", подразумевая под этим, что время доступа к компонентам массива или записи не зависит от значения индекса массива или указателя поля записи. Достоинство агрегирования с помощью файла (частично компенсирующее описанный недостаток) заключается в том, что файл не имеет ограничения на количество составляющих его элементов и это количество может изменяться во время выполнения программы.

Указатели и курсоры

В дополнение к средствам агрегирования ячеек в языках программирования можно использовать указатели и курсоры. Указатель (pointer) - это ячейка, чье значение указывает на другую ячейку. Нри графическом представлении структуры данных в виде схемы тот факт, что ячейка А является указателем на ячейку В, показывается с помощью стрелки от ячейки А к ячейке В.

В языке Pascal с помощью следующего объявления можно создать переменную-указательрг*, указывающую на ячейку определенного типа, например ТипЯчейки:

prt: Т ТипЯчейки

Постфикс в виде стрелки, направленной вверх, в Pascal используется как оператор разыменования, т.е. выражение prtt обозначает значение (типа ТипЯчейки) в ячейке, указанной prt.

Курсор (cursor) - это ячейка с целочисленным значением, используемая для указания на массив. В качестве способа указания курсор работает так же, как и указатель, но курсор можно Использовать и в языках (подобных Fortran), которые не имеют явного типа указателя. Интерпретировав целочисленную ячейку как индекс-





0 1 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

0.0034