Главная >  Документация 

 

Современные системы теплоснабжения (стс) представляют собой достаточно сложные технические системы со значительным количеством разнообразных по своему функциональному назначению элементов. характерным.  В работе выбраны основные показатели систем теплоснабжения и газоснабжения, которые позволили обосновать оптимальные схемы теплоснабжения микрорайона. Приведен анализ основных факторов, влияющих на работу системы теплоснабжения. Приводятся рекомендации по выбору оптимальной системы теплоснабжения.

 

Россия получила в наследство от СССР высокий уровень централизации теплоснабжения. При этом обеспечивалась комбинированная выработка теплоты и электричества. Эффективно очищались и рассеивались продукты сгорания.

 

 Но в то же время существующие централизованные системы теплоснабжения обладают существенными недостатками. Это перегрев зданий в переходный период, большие потери теплоты трубами, отключение потребителей на время проведения профилактических работ.

 

 Состояние систем теплоснабжения в России является критическим. Число аварий на сетях теплоснабжения возросло в пять раз по сравнению с 1991 г. (2 аварии на 1 км тепловых сетей). Из 136 тысяч км тепловых сетей 29 тысяч км находятся в аварийном состоянии. Потери теплоты при транспортировании теплоносителя достигают 65 %. То есть каждая пятая тонна условного топлива идет на обогрев атмосферы и грунта.

 

 Сокращение финансирования и плохое качество перекладки ухудшают ситуацию. Существует противоречие, которое заключается в том, что производители сверхнормативные потери теплоты включают в тарифы и требуют оплаты по произведенной, а не по потребляемой теплоте. Кроме того, потребители должны платить по площади отапливаемого помещения, то есть независимо от количества и качества теплоносителя.

 

 В настоящее время крайне велик интерес к децентрализованному теплоснабжению. Это связано с появлением на рынке большого разнообразия малых автоматизированных котлов зарубежного и отечественного производства, работающих в автоматическом режиме и потому, что в качестве топлива в таких системах используется газ. При таких условиях они становятся конкурентоспособными с централизованными источниками, которыми являются ТЭЦ и большие котельные.

 

 В России эксплуатируются несколько десятков многоэтажных домов с поквартирным отоплением до пяти этажей. Этажность ограничена действующими строительными нормами. В порядке эксперимента Госстрой и ГУПО МВД РФ разрешили строительство 9-14-этажных домов с поквартирным отоплением в Смоленской, Московской, Тюменской, Саратовской областях.

 

 При эксплуатации настенных котлов с закрытой топкой поступление воздуха должно быть обеспечено не только на горение, но и на 3-хкратный воздухообмен в помещении кухни, где, как правило, их устанавливают.

 

 Дымоудаление при поквартирном теплоснабжении связано с устройством наружных и внутренних газоходов из коррозионно-стойкого металла с теплоизоляцией, исключающей конденсацию при периодической работе теплогенераторов в переходный период отопительного сезона.

 

 В высотных зданиях возникают проблемы с тягой на нижних этажах (самая большая тяга) и верхних (слабая тяга) этажах.

 

При использовании децентрализованного теплоснабжения подвалы и лестничные марши не отапливаются, что приводит к промерзанию фундамента и снижению срока службы здания в целом.

 

Жители квартир, находящихся в центральной части, могут греться за счет владельцев окружающих квартир. Создается определенный тип «энергопаразитов». Экологические параметры настенных котлов находятся в норме, и показатель эмиссии NOx лежит в пределах от 30 до 40 мг/(кВт ч).

 

В то же время настенные котлы имеют рассредоточенные в жилом районе выбросы продуктов сгорания при относительно низкой высоте дымовых труб, что оказывает существенное влияние на экологическую ситуацию, загрязняя воздух в жилом районе.

 

В связи с перечисленными выше недостатками и преимуществами систем централизованного и автономного теплоснабжения сразу же возникает вопрос: где и в каких случаях наиболее целесообразно автономное теплоснабжение, а в каких централизованное?

 

 После сбора всей необходимой информации выполнено сравнение четырех вариантов систем теплоснабжения на примере микрорайона Куркино г. Москвы. При этом во всех квартирах устанавливаются электрические плиты.

 

 

 

 I вариант - централизованное теплоснабжение от котельных.

 

 II вариант - централизованное теплоснабжение от АИТ (автономных источников теплоты).

 

 III вариант - децентрализованное теплоснабжение от крышных котельных.

 

 IV вариант - поквартирное теплоснабжение.

 

В первом варианте разработана система централизованного теплоснабжения, где источником теплоты является котельная, от которой предусмотрена двухтрубная прокладка тепловых сетей до ЦТП, и после ЦТП четырехтрубная на отопление и горячее водоснабжение. В этом случае подача газа осуществляется к котельной.

 

В четвертом варианте в квартире устанавливается местный источник теплоты, который обеспечивает подачу теплоносителя в системы отопления и горячего водоснабжения.

 

В этой схеме предложена 2-хступенчатая система подачи газа.

 

 1–я ступень – газопровод среднего давления, который прокладывается внутри квартала (в каждом доме устанавливается шкафной регуляторный пункт).

 

 2–я ступень – внутридомовые газопроводы низкого давления (газ подводится только к местному источнику теплоты).

 

Второй и третий варианты являются промежуточными между первым и четвертым. Во втором случае в качестве источника теплоты используются АИТ (Автономный Источник Теплоты), от которых предусмотрена двухтрубная прокладка от АИТ до ИТП (Индивидуального Теплового Пункта), а от ИТП – четырехтрубная на отопление и горячее водоснабжение. В этом случае предусматривается подача газа к АИТ (автономным источникам теплоты) по газопроводам среднего давления. В третьем случае в качестве источника теплоты используются крышные котельные сравнительно малой мощности (от 300 до 1000 кВт), которые располагаются непосредственно на крыше здания и удовлетворяют потребность в теплоте на нужды отопления, вентиляции и горячего водоснабжения. Газопровод к котельной подводится по наружной стене здания открыто в местах, удобных для обслуживания и исключающих возможность его повреждения.

 

Варианты систем теплоснабжения представлены на рис. 1.

 

Технические решения по теплоснабжению на базе нескольких вариантов должны приниматься на основе технико-экономических расчетов, оптимальный вариант которых находится путем сравнения возможных решений [1].

 

Наиболее дорогостоящим вариантом теплоснабжения является первый - централизованное теплоснабжение от котельной. При такой системе большая часть затрат приходится на тепловые сети с учетом ЦТП, что составляет 63,8 % от общей стоимости системы в целом. Из них на прокладку только тепловых сетей приходится 84,5 %. Затраты на сам источник теплоты – 34,7 %, на долю газовых сетей с учетом ГРП и ГРПШ приходится 1,6 % от общей суммы на систему.

 

Четвертый вариант (с поквартирным теплоснабжением) всего на 4,2 % дешевле первого (рис. 2). Значит, их можно принять как взаимозаменяемые. Если в первом варианте большую часть затрат составляют тепловые сети, то при поквартирном теплоснабжении – источник теплоты, то есть настенные котлы – 62,14 % от общей стоимости системы в целом. Кроме этого при поквартирном теплоснабжении увеличиваются затраты на прокладку газовых сетей.

 

Стоит обратить внимание на два других варианта. Это крышные котельные и АИТ.

 

С точки зрения экономики наиболее выгодным является второй вариант, то есть централизованное теплоснабжение от АИТ (автономных источников теплоты). В данном варианте большая часть затрат приходится на тепловые сети с учетом ИТП, что составляет 67,3 % от общей стоимости системы в целом. Из них на сами тепловые сети приходится 20,3 %, остальные 79,7 % - на ИТП. Затраты на источник теплоты составляют 26 %, на долю газовых сетей с учетом ГРП и ГРПШ приходится 6,7 % от общей суммы на систему.

 

 Затраты на прокладку труб системы теплоснабжения зависят от протяженности тепловых сетей. Следовательно, приближение источника теплоты, работающего на газе, к потребителю путем устройства пристроенных, встроенных, крышных и индивидуальных теплогенераторов значительно снизит затраты на систему. Кроме этого статистика говорит о том, что большая часть отказов системы централизованного теплоснабжения приходится на тепловые сети, а значит, сокращение протяженности тепловых сетей повлечет за собой повышение надежности системы теплоснабжения в целом [2].

 

Поскольку теплоснабжение в России имеет большое социальное значение, повышение его надежности, качества и экономичности является важнейшей задачей. Любые сбои в обеспечении населения и других потребителей тепловой энергией негативным образом воздействуют на экономику страны и усиливают социальную напряженность.

 

При сложившейся напряженной ситуации необходимо производить внедрения ресурсосберегающих технологий.

 

Кроме этого, для повышения надежности прокладываемых теплопроводов необходимо применять предварительно изолированные трубы бесканальной прокладки с пенопололиуретановой изоляцией в полиэтиленовой оболочке («труба в трубе»).

 

Сутью реформы жилищно-коммунального хозяйства должно стать не повышение тарифов, а регулирование прав и обязанностей потребителя и производителя теплоты. Необходимо согласовать нормативно-правовые вопросы и разработать базу технологического регулирования. Должны быть созданы все условия экономической привлекательности для инвестиций.

 

Рис. 1. Принципиальные схемы систем теплоснабжения

 

Рис. 2. График приведенных затрат

 

Литература

 

1. Экономика теплогазоснабжения и вентиляции: Учеб. для вузов / Л. Д. Богуславский, А. А. Симонова, М. Ф. Митин. – 3-е изд., перераб. и доп. – М.: Стройиздат, 1988. - 351 с.

 

2. Ионин А. А. и др. Теплоснабжение. – М.: Стройиздат, 1982. - с. 336.

 

 

Материалы Международной научно-технической конференции «Теоретические основы теплогазоснабжения и вентиляции», 23 – 25 ноября 2005, МГСУ

 

В статье рассмотрены вопросы оптимизации параметров функционирования системы теплоснабжения с использованием эксергетических методов. К таким методам относится метод термоэкономики, в котором сочетаются и термодинамические, и экономические составляющие анализа систем. Полученные в результате применения указанного метода модели позволяют получить оптимальные параметры функционирования системы теплоснабжения в зависимости от внешних воздействий.

 

Современные системы теплоснабжения (СТС) представляют собой достаточно сложные технические системы со значительным количеством разнообразных по своему функциональному назначению элементов. Характерным для них является общность ехнологического процесса получения пара или горячей воды на котельной за счет энергии, выделяемой при сжигании органического топлива. Это позволяет в различных экономико-математических моделях учитывать только конечный результат работы СТС – подачу к потребителю теплоты Qпот в тепловых или стоимостных показателях, а в качестве главных факторов, определяющих величину Qпот, считать затраты на производство и   транспортирование теплоты: расход на топливо, электроэнергию и другие материалы, заработную плату, амортизацию и ремонт оборудования и пр.

 

Обзор методов термодинамического анализа позволяет сделать вывод, что оптимизацию параметров функционирования СТС целесообразно проводить с использованием эксергетических методов. К таким методам относится метод термоэкономики, в котором удачно сочетаются и термодинамические, и экономические составляющие анализа СТС.

 

Основной идеей метода термоэкономики является использование для оценки изменений, происходящих в энергетической системе, некоторой обобщенной термодинамической характеристики, обеспечивающей получение конечного полезного эффекта. Учитывая, что в СТС энергия может передаваться как в форме теплоты, так и в форме механической работы, в качестве обобщенной термодинамической характеристики выбрана эксергия [1]. Под эксергией теплоты следует понимать работу, которая может быть получена в обратимом прямом цикле при переходе некоторого количества теплоты Qh от греющего источника с температурой Th к окружающей среде с температурой Toc [1]:

 

где hT - термический КПД прямого обратимого цикла.

 

При использовании термоэкономического метода анализируются изменения, происходящие с основным потоком эксергии, обеспечивающим получение полезного конечного эффекта (в случае анализа СТС - эксергии воздуха в помещении). При этом рассматриваются и учитываются потери эксергии, возникающие при передаче и   преобразовании энергии в отдельных элементах СТС, а также экономические затраты, связанные с эксплуатацией соответствующих элементов СТС, наличие которых определяется выбранной схемой.

 

Анализ изменений, претерпеваемых только основным потоком эксергии, обеспечивающим получение полезного конечного эффекта, дает возможность представить термоэкономическую модель СТС в виде ряда отдельных зон, соединенных последовательно. Каждая зона представляет собой группу элементов, обладающих относительной самостоятельностью в рамках системы. Такое линеаризованное представление технологической схемы СТС значительно упрощает все дальнейшие расчеты за счет исключения из рассмотрения отдельных технологических связей.

 

Таким образом, метод термоэкономики, включающий термоэкономическую модель СТС, позволяет оптимизировать параметры функционирования СТС.

 

На основе метода термоэкономики разрабатывается термоэкономическая модель СТС, принципиальная схема которой показана на рис. 1, где система водяного отопления с искусственной циркуляцией воды присоединяется к тепловой сети по независимой схеме.

 

Рис. 1. Принципиальная схема СТС На рис. 1 обозначены элементы СТС, учитываемые при разработке модели: 11 - насос (компрессор) с электродвигателем для подачи топлива в котлоагрегат; 12 – теплообменный аппарат (котел); 13 – сетевой насос с электродвигателем для обеспечения циркуляции воды в теплосети; 14 - подающий теплопровод; 15 - обратный теплопровод; 211 – водоводяной теплообменник местного теплового пункта; 221 – циркуляционный насос местной системы отопления с электродвигателем; 212 – подогреватель сырой воды; 222 – насос исходной воды с   электродвигателем; 232 – подпиточный насос с электродвигателем; 31 - отопительные приборы.

 

При построении термоэкономической модели СТС в качестве целевой функции используется функция энергетических затрат. Энергетические затраты, непосредственно связанные с термодинамическими характеристиками системы, определяют с учетом эксергии стоимость всех потоков вещества и энергии, поступающих в рассматриваемую систему.

 

Кроме того, для упрощения получаемых выражений сделаны следующие допущения:

 

· не учитывается изменение потерь давления в теплопроводах при транспортировке теплоносителя. Потери давления в трубах и теплообменных аппаратах считаются постоянными и не зависящими от режима работы;

 

· потери эксергии, происходящие во вспомогательных теплопроводах (трубах в котельной) и теплопроводах системы отопления (внутренних трубах) в результате теплообмена теплоносителя с окружающей средой, считаются постоянными, не зависящими от режима работы СТС;

 

· потери эксергии, вызванные утечками воды из сети, считаются постоянными, не зависящими от режима работы СТС;

 

· не учитывается теплообмен рабочего тела с окружающей средой, происходящий в котле, баках различного назначения (декарбонизаторах, баках-аккумуляторах) и теплообменных аппаратах через их наружную поверхность, омываемую воздухом;

 

· нагрев теплоносителя за счет передачи ему дополнительной теплоты дымовых газов, также как и подогрев воздуха, поступающего в топку, теплотой уходящих газов, в рассматриваемом случае не оптимизируются. Считается, что основная часть теплоты дымовых газов используется для подогрева питательной или  сетевой воды в экономайзере. Оставшаяся часть теплоты дымовых газов выбрасывается в атмосферу, при этом температура уходящих дымовых газов Туг в установившемся режиме работы котлоагрегата принимается равной 140 °С;

 

· не учитывается нагрев перекачиваемой воды в насосах.

 

Учитывая изложенные исходные положения и сделанные допущения, термоэкономическая модель СТС, принципиальная схема которых приведена на рис. 1, может быть представлена в виде трех последовательно соединенных зон, изображенных на рис. 2 и ограниченных контрольной поверхностью.

 

Зона 1 объединяет насос (компрессор) с электродвигателем для подачи топлива в котлоагрегат 11, теплообменный аппарат (котел) 12, сетевой насос с электродвигателем для подачи теплоносителя потребителям 13, подающий 14 и обратный 15 теплопроводы. В зону 2(1) входит водоводяной теплообменник местного теплового пункта 211 и циркуляционный насос с электродвигателем 221, а в зону 2(2) – подогреватель сырой воды 212, насос сырой воды с электродвигателем 222 и подпиточный насос с электродвигателем 232. Зоны 2(1) и 2(2) представляют собой параллельное соединение отдельных элементов термоэкономической модели многоцелевой СТС, обеспечивающей подвод теплоты к объектам с различной температурой. В зону 3 входят отопительные приборы 31.

 

От внешнего источника через контрольную поверхность к различным зонам термоэкономической модели СТС подводится эксергия: е11 - для привода электродвигателя топливного насоса (компрессора); е13 - для привода электродвигателя сетевого насоса; е22(1) - для привода электродвигателя циркуляционного насоса; е22(2) - для привода электродвигателя насоса сырой воды; е23(2) - для привода электродвигателя подпиточного насоса. Цена эксергии, подводимой от внешнего источника, т. е. электрической энергии, известна и равна Цэл. Равенство электрической энергии и эксергии объясняется тем, что электрическая энергия может быть полностью превратима в любой другой вид энергии [1]. От внешнего источника подводится топливо, расход которого равен vт, а цена Цт.

 

Так как в процессе функционирования СТС основное место занимают тепловые процессы, то в качестве оптимизируемых переменных используются такие, которые позволяют разработать термоэкономическую модель СТС и обеспечивают сравнительно простое определение температурных условий протекания процессов, имеющих место в СТС.

 

 При решении задачи статической оптимизации СТС с учетом сделанных допущений и принятых обозначений величина энергетических затрат, включающих затраты на электрическую энергию и топливо, определяется по зависимости:

 

где t - время работы СТС.

 

Расход электрической энергии на привод двигателей насосов и расход топлива зависят от режима работы СТС, а значит, от температурных напоров в теплообменных аппаратах, температуры уходящих газов и интервала изменения температуры теплоносителя. Поэтому правая часть выражения (2) является функцией выбранных  оптимизируемых переменных. Следовательно, величина энергетических затрат является функцией нескольких переменных, экстремальное значение которой определяется при условии равенства нулю частных производных функции энергетических затрат по оптимизируемым переменным.

 

Такой подход справедлив, если все оптимизируемые переменные рассматриваются как независимые и задача сводится к определению безусловного экстремума. В действительности эти переменные связаны между собой. Получение аналитических выражений, описывающих взаимосвязь между всеми оптимизирующими переменными, представляется достаточно сложной задачей. В то же время применение в ходе исследований метода термоэкономики позволяет упростить эту задачу.

 

Как показано на рис. 2, термоэкономическая модель СТС представлена в виде ряда последовательно соединенных зон, что позволяет выразить эксергию, подводимую к каждой из зон, в виде функциональных зависимостей от потока эксергии, выходящего из рассматриваемой зоны, и воздействующих на эту зону оптимизируемых переменных.

 

С учетом сказанного, количество эксергии, подводимой к различным элементам СТС от внешнего источника ej (см. рис. 2), и объемный расход топлива vт, могут быть в общем виде представлены следующим образом:

 

Уравнения, входящие в систему (4), относятся к разным зонам термоэкономической модели, связь между которыми осуществляется основным потоком эксергии. Поток эксергии, связывающий отдельные зоны, представлен в виде функциональной зависимости от выходящего из зоны потока эксергии и воздействующих на рассматриваемую зону оптимизируемых переменных:

 

В выражениях (4) и (5) ej - означает количество эксергии, а Ej - функцию, описывающую его изменение.

 

Наличие связей между оптимизируемыми переменными заставляет рассматривать оптимизацию величины энергетических затрат как задачу оптимизации функции нескольких переменных при наличии ограничений типа равенств (уравнений связи), т. е. как задачу нахождения условного экстремума. Задачи, связанные с нахождением условного экстремума, могут быть решены с помощью метода неопределенных множителей Лагранжа. Применение метода неопределенных множителей Лагранжа сводит задачу нахождения условного экстремума исходной функции энергетических затрат (1) к задаче отыскания безусловного экстремума новой функции – лагранжиана.

 

С учетом приведенных выше систем уравнений (4) и (5) выражение лагранжиана для рассматриваемой задачи оптимизации параметров функционирования СТС записывается следующим образом:

 

При сравнении выражения для энергетических затрат (2) и для лагранжиана (6) с учетом зависимостей (4) и (5) можно убедиться в их полной тождественности.

 

Для нахождения условий экстремума должны быть взяты частные производные от функции Лагранжа (6) по всем переменным (как оптимизируемым, так и дополнительным, которые вводятся уравнениями связи) и приравнены нулю. Частные производные по потокам эксергии, связывающим отдельные зоны термоэкономической модели ej, позволяют вычислить значения множителей Лагранжа lj. Так, частная производная по e2(1) имеет следующий вид:

 

Система уравнений (8) устанавливает связь между диссипацией энергии и энергетическими затратами в каждой зоне термоэкономической модели при определенных значениях экономических показателей Цэл, Цт, l2(1), l2(2), l3. Величины l2(1), l2(2), l3 в общем случае выражают собой скорость изменения энергетических затрат при изменении  количества эксергии или другими словами – цену единицы эксергии, выходящей из каждой зоны термоэкономической модели.

 

Решение системы (8) с учетом уравнений (7) позволяет определить необходимые условия для нахождения минимума лагранжиана (6). Для решения систем уравнений (7) и (8) выражения (4) и (5), записанные в общем виде, необходимо представить в виде развернутых аналитических соотношений, являющихся составляющими математического описания процессов, происходящих в отдельных элементах СТС.

 

Литература

 

Бродянский В. М., Фратшер В., Михалек К. Эксергетический метод и его приложения. Под. ред. В. М. Бродянского - М.: Энергоатомиздат, 1988. - 288 с.

 

 

- надежное энергоснабжение экономики и населения страны электроэнергией; - сохранение целостности и развитие единой энергетической системы страны, ее интеграцию с другими энергообъединениями на еврази. 2) заводская котельная; 3) местные электрические приборы..   понятие экологизации технологий производства состоит в проведении мероприятий, направленных на предотвращение отрицательного воздействия производственных процессов на природную на окружаюую человека. Array. Маркин владимир владимирович руководитель группы компаний  «энергоэффективные технологии».

 

Главная >  Документация 


0.0019